Nazarbayev University Email Prioritizer

Madi Turgunov
School of Engineering and Digital Sciences
Nazarbayev University
Astana, Kazakhstan
madi.turgunov @nu.edu.kz

Abstract—This paper investigates the use of RoBERTa, a
powerful language model, for classifying university student email.
The task focuses on addressing inbox overload caused by a mix of
necessary and irrelevant emails, a problem inadequately solved
by traditional spam filters. Data for the study came from my
own personal university inbox (@nu.edu.kz) and was initially
labeled using Google’s Gemini API for efficiency. Human review
ensured label accuracy. The dataset was imbalanced, with twelve
defined categories. RoOBERTa was trained on this data, using
weighted classes to mitigate bias. The final model achieved an
F1-score of 0.754 on an unbalanced test set and demonstrated
practical utility in a human evaluation (42/50 accuracy). This
work underscores RoOBERTa’s potential for specialized email
organization while highlighting the need for larger datasets
and further refinement of labeling to improve performance in
underrepresented categories.

I. TASK DESCRIPTION

The task is relatively simple: a big problem of our university
students is that the email inbox that we so desperately need
for studying often gets clogged up by spam and overall
useless emails, coming from the University itself! Normal
spam detectors do not do this justice, since most of the email
are not necessarily spam , but they might as well be, as they
are useless. This is where RoBERTa comes in: by analyzing
the sender, title and contents of the email, the classifier should
be able to tell apart between 12 different categories: Academic,
Events, Updates, Club-Related Activity, High-Priority, Work-
Related, Spam, Dormitory-Related, Out-of-university, Social
and Non-Academic (other).

II. DATA USED

The data used for this task is the inbox from my personal
@nu.edukz email address. It was received using |Google
lakeout.

The data consists of 5985 samples, which include the title,
sender, timestamp and body. The ground truth for the data
was obtained using Google’s Gemini API|[1]], which is a large
language model with a relatively easy to use API service. The
data was processed in batches, and was sent, alongside it’s
body, to the API, which then provided the classification truth.
After thorough human evaluation of the initial 100 samples, I
have concluded that Gemini is trustworthy, as all 100 of the
evaluations were accurate to my own understanding.

As you can see in[I] the labels are very unbalanced. Whilst
this bias could hurt the performance of RoBERTa, which is
why for training, I used weighted classes.

Label Occurences
Academic 2561
Event 710
Club 536
Updates 451
High 375
Work 382
Other 261
Spam 252
Dorm 242
Outside 186
Social 74
Non-Academ 24

Fig. 1. Frequency of Labels

The emails were gathered into a dataframe of 4 columns,
and an extra S5th column was added by Gemini to each entry.
Most trailing spaces, trailing tabs and newlines are cleaned,
but all of the text is still kept in UTF-8.

Typical Email Example
Title: you have submitted your assignment submission

for machine translation

Author: ”Do not reply to this email (via NU Moodle)”
noreply @moodle.nu.edu.kz

Timestamp: “Mon, 19 Feb 2024 19:51:31 +0600”
Body: you have submitted an assignment submission for
’machine translation’. You can see the status

of your assignment submission: https://moodle.nu.edu.
kz/mod/assign/view.php?id=362854

Label: Academic

Further analysis of the data shows that the average number
of words in an email input was 294.23. In order to calculate
the text length, the length of the title, author and the body
was summed. The result can be seen in [3] where it shows that
the majority of emails fall wihtin the range of 0-500 words.
However, some particular outliers exist, going as far as 5000
words in length.

If we consider the mean length by label, the academic-
related emails are the shortest at a mean of 199.5, while the
work-related emails tend to be the longest, at a mean of more
than double - 490.6 2

https://takeout.google.com/settings/takeout
https://takeout.google.com/settings/takeout
https://ai.google.dev
https://moodle.nu.edu.kz/mod/assign/view.php?id=362854
https://moodle.nu.edu.kz/mod/assign/view.php?id=362854

Average number of words in a text by label

ACADEM
cLue
DORM
EVENT
HIGH

NON-ACADEM

label

OTHER
OUTSIDE
SOCIAL
SPAM
UPDATES

WORK
0 100 200 300 400 500
Fig. 2. Mean text length by label
Word length distribution

500 A

400
a
b
+ 300
bt
o
o
on
=
c
g 2001
o
-8

100 1

0- T T T T
0 1000 2000 3000 4000 5000
Word length

Fig. 3. Distribution curve of text length

III. METHODS

The data was split into three datasets - Training, Validation
and Testing. A dictionary was created in order to translate
between labels and label IDs and vice-versa.

All three datasets were tokenized using a custom-written
tokenizer. Since RoOBERTa uses solid text, the four different
fields were concatenated using [SEP] tokens. The tokenized
inputs were then padded to get to 512 tokens, and labels were
converted to their IDs.

For training, HuggingFace’s Trainer API was used. It
offers a simple and reliable way to train big models such as
RoBERTa. For training, the train and validation datasets were
used. After four epochs of training, the models were evaluated
using Trainer API’s evaluate() function on the test dataset.

The training and evalutation was done on my personal
computer using NVidia RTX 3060’s CUDA cores on 12 GB of
VRAM, which was enough to run the process at an acceptable
pace.

IV. EXPERIMENTS

In order to successfully label thousands of emails for ground
truth values, Gemini API was used. For that purpose, a
separate python script was written, that would convert the
downloaded .mbox file into a .csv file, and provide Gemini
with a prompt to label such emails. The results were gathered
into a separate csv file, which were then merged together
into final_output.csv , which was then used for training the
RoBERTa model.

Since a lot of the data was dirty, and some were results of
Gemini’s hallucinations, rows with null values or rows without
labels were removed from the dataset. Overall, out of the
8774 rows present in the .csv file, 2789 were discarded as
‘unusable’.

The left data was then filtered further — in order to remove
Gemini’s hallucinated categories, any categories with less than
10 entries was removed from the dataset. Since Gemini’s
output table and the original table were merged, some values
did not match, which is why the code also prioritizes real titles
from the original .csv file (subject_x and author_x, as opposed
to subject_y and author_y).

The dataset was split into a train and validation dataset, with
80% of the dataset becoming the training set, 10% going into
the validation, and 10% going into the test dataset.

The 12 labels were then defined in the id2label and label2id
dictionaries:

id2label = {

"0": "ACADEM",
n 1 n . n EVENT " ,
"2": "UPDATES",
|l3": IICLUBH,
"4": IIHIGH"’

n 5 n . n WORK n ,
"6": IISPAM",

n 7 n . IIDORMII ,
"8": IIOTHER",
"9": "OUTSIDE",
"10": "SOCIAL",
"11": "NON-ACADEM"

The tokenizer, which uses RobertaTokenizeFast, was also
customized by concatenating all of the fields into a single
token string using separator tokens, as well as converting the
labels into the IDs.

The datasets were, afterwards, tokenized using .map(), and
their format was set to the torch format, which would adapt the
columns to be more usable to the ROBERTa model (input_ids,
attention_mask and label).

Since the data was very unbalanced, class weights were cal-
culated, and implemented into the TrainerAPI’s loss function

The training was done using Transformers’ TrainerAPI.
Custom compute metrics were defined to feature F1 score from
sklearn’s library. The training args used were:

training_args = TrainingArguments (
output_dir="./results",
num_train_epochs=4,

per_device_train_batch_size=8,
per_device_eval_batch_size=8,
evaluation_strategy="epoch",
learning_rate=[varies],
weight_decay=0.01,
warmup_steps=500,
save_strategy="epoch",
load_best_model_at_end=True,

)

The learning rate starts at Se-5, but according to the learning
rate scheduler, finds attempts to find the learning rate with the
lowest loss.

During training, two strategies were used:

1) Training is done normally
2) Training is done with the usage of class weights to
balance the dataset

After the training had finished, it was evaluated in two ways:
once on the standard test dataset (596 entries), and once on
a balanced dataset (with there being 100 of each label). The
evaluation was done using TrainerAPI’s.evaluate() method.

V. RESULTS & ANALYSIS

When evaluating the results, two test sets were used - one
with typical distributions of labels, and one that was artificially
balanced to have around 50 examples of each label. The
results were evaluated using the F1 scoring function, which
were 0.754 for the unbalanced test set, and 0.67 for the
balanced, but smaller test set.

The balanced test suffers from having too little entry points,
due to the unbalanced nature of the dataset, so the presented
figures will be from the unbalanced test dataset. This is, in my
opinion, okay, since this bias is consistent with real life NU
Emails.

As we can see on the confusion matrix, |§|, there was
only one Non-Academic email in the test dataset, and it
was misclassified. This is to be expected, because the label
is, actually, quite vague, and can often be interpreted as a
different label. We can also see from Figure [5] that all of
the misclassified texts were shorter than 400 words, and that
the probability of being misclassified rises dramatically for
texts with wordcounts below 50. We can also see that the
non-academic label has a 100% misclassification rate, for the
reason mentioned before. Spam, Academic and Work have a
much lower misclassification rate overall, but cateogires like
Social, Outside and Other have a much higher misclassifica-
tion rate, which is explained by the vagueness of the labels.
This proves that, as an improvement in the future, the labels
could be reworked or the label list may be shortened.

After this, the human evaluation consisted of me testing the
inference on new emails. After testing over 50 emails from
the inbox, the human tester - me - has judged an accuracy of
42/50.

VI. CONCLUSION

This project demonstrates the potential of using contextual
language models like RoBERTa for classifying emails within

Misclassification rate by label

NON-ACADEM
SOCIAL
OUTSIDE
OTHER
UPDATES
CLUB

Label

HIGH

EVENT

DORM

WORK

ACADEM
SPAM

0.0 0.2 0.4 0.6 0.8 1.0
Misclassification rate

Fig. 4. Misclassification By Label

Misclassified text length distribution

40

35 1

30 4

]
wu
L

15 1 /h ““‘--//-\
10 1 \

Percentage of texts
¥
o
|

T T T T T T
0 50 100 150 200 250 300 350 400
Body length

Fig. 5. Misclassification by Length

specific domains like university inboxes. Although the dataset
was imbalanced, the model exhibited acceptable accuracy
in identifying various email categories. Notably, the use of
weighted classes during training may need further refinement
to improve performance on underrepresented categories. The
human evaluation with a 42/50 accuracy highlights the model’s
practical utility. The main issue with the experiment was the
size of the dataset - it was simply too small to find a good
balance between the test and training sets. The labels were
also a bit too vague, which showed detrimental, yet acceptable
results.

REFERENCES

[1] Google, “Google generative ai api (python).” https://ai.google.dev/api/
python/google/generativeai. Accessed: 01.03.2024.

[2] Hugging Face, “Transformers: State-of-the-art natural language process-
ing.” https://huggingface.co/docs/transformers/index, 2023. Accessed:
03.03.2024.

https://ai.google.dev/api/python/google/generativeai
https://ai.google.dev/api/python/google/generativeai
https://huggingface.co/docs/transformers/index

Actual

ACADEM - 245

EVENT

UPDATES

CLUB

HIGH

WORK

SPAM

DORM

OTHER

OUTSIDE

SOCIAL

NON-ACADEM

EVENT
UPDATES

=
i}
(]
g
<L

Fig. 6. Confusion Matrix

CLUB

HIGH

Confusion Matrix

SPAM

Predicted

DORM

OTHER

OUTSIDE

SOCIAL

NON-ACADEM

- 200

150

100

50

	Task Description
	Data Used
	Methods
	Experiments
	Results & Analysis
	Conclusion
	References

