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Abstract—Brain-Computer Interfaces serve as direct gateway
for communication of humans with computers. A traditionally
unexplored paradigm of BCI is Inner Speech, which deserves
more attention and research. This project work intends to
discover how traditional Machine Learning (ML) and Deep
Learning (DL) algorithms perform on the task of Inner Speech
classification. We report that classifying Inner Speech (imagina-
tion of one’s own voice) is indeed possible via providing models
that provide classification accuracy above chance.

We find that traditional classification algorithms do not pro-
vide sufficient accuracy when it comes to analyzing Inner Speech.
However, some more complex models are able to showcase a
degree of reliability. We also showcase how our work compares
to existing literature, and propose reasons as to how to improve
the results.

Index Terms—BCI, Inner Speech classification, EEGNet

I. INTRODUCTION

Brain-Computer Interfaces (BCIs) represent systems that
enable users to control external devices or communicate
through brain activity. Designed primarily for individuals
with disabilities, BCIs offer a non-invasive communication
channel by translating neural signals into digital commands for
assistive applications like speech synthesizers, wheelchairs, or
neural prostheses.

While several BCI paradigms have been developed in
the past, each with its unique benefits, they often present
drawbacks that limit their practical applicability. For example,
motor imagery BCIs require extensive training, P300 and
SSVEP paradigms rely on continuous attention to external
stimuli, and letter-by-letter spelling or movement imagination
demands significant mental effort [1]. Additionally, most BCI
systems suffer from low Information Transfer Rates (ITR) and
require individual calibration.

To address these challenges, inner speech recognition has
emerged as a promising alternative communication paradigm
for BCIs. Inner speech, the internalized process of speech
without articulation, engages brain regions associated with
language comprehension and production [2]. By monitoring
these brain areas, it is theoretically possible to develop a BCI
that classifies neural representations of imagined words.

While previous studies have explored inner speech clas-
sification using invasive methods like electrocorticography
(ECoG), relatively little research exists on inner speech clas-
sification using non-invasive EEG signals [3]. Given the im-
portance of non-invasiveness and accessibility in BCI applica-

tions, our study focuses on classifying inner speech from EEG
data.

Our study aims to investigate the feasibility of classifying
inner speech using EEG data. Leveraging a recently pub-
lished dataset ”Thinking out loud” containing EEG recordings
during inner speech of four imagined words, we employ a
convolutional neural network (CNN), LDA and SVM models
for our multi-class classification task [2]. CNNs, a subclass
of deep learning architectures, excel at learning spatial and
temporal representations in EEG data, eliminating the need
for time-consuming preprocessing and feature engineering.
Additionally, we utilize Linear Discriminant Analysis (LDA)
to find optimal feature combinations for clear class separation
and Support Vector Machines (SVMs) to identify hyperplanes
for effective class distinction in high-dimensional spaces. This
multi-model approach aims to enhance classification accuracy
and contribute to the development of user-friendly Brain-
Computer Interface (BCI) systems. Furthermore, we conduct
a comparative analysis of our results with existing literature
to validate the effectiveness of our proposed methodology.

II. METHODS

A. Dataset

1) Data Collection Tasks: Inner speech processes were
examined in the dataset to be employed in the potential BCI
applications. Participants completed three type of data record-
ing tasks: inner speech, pronounced speech, and visualization
[2].

Inner Speech: Participants silently imagined giving a word-
based command to a computer, focusing on the internal
voice without articulation(neither hand nor lips). Pronounced
Speech: Participants articulated the word-based commands
aloud to differentiate motor activity between pronounced and
inner speech. Visualization: Participants mentally moved a
circle on-screen in response to directional cues. This aimed
to isolate activity related to visual and spatial aspects that
might overlap with inner speech. The dataset design facilitates
the localization of neural activation sources and network
connections involved in inner speech. The pronounced speech
condition helps isolate motor activity, differentiating it from
inner speech processes. The visualization task helps identify
activity related to visual and spatial thinking that might be
present during inner speech [2].



Fig. 1. Trial workflow

2) Data Collection: The paper includes Electroencephalog-
raphy (EEG), Electrooculography (EOG), and Electromyogra-
phy (EMG) data were collected via a BioSemi ActiveTwo sys-
tem with 128 active EEG channels and 8 external EOG/EMG
channels [2]. An appropriately sized EEG head cap with pre-
fixed electrode positions was used, impedance below 40 Ohm
was reached via ”signagel” conductive gel.

3) Dataset Pre-Processing: The dataset already included a
certain amount of pre-processing, with several filters, such as
a 0.5-100Hz zero-phase band-pass filter, a 50Hz Notch filter
to remove the powerline noise. The final data from the dataset
was presented at a sampling rate of 254Hz, and the data was
cut to a length of 4.5s. An Independent Component Analysis
(ICA) was already applied to the dataset to isolate and remove
signal artifacts (e.g., eye blinks, muscle movement) from
the EEG channels. Finally, mouth movement during inner
speech or visualization trials is detected by applying a simple
threshold- based method on EXG7 and EXG8 (mouth area
electrodes) [2]. Trials exceeding the movement threshold are
excluded in order to ensure the focus purely on internal
thought processes without the inference of motor functions.
The final resultant data to be experimented on included only
the 128 electrode EEG readings, since the 8 external channels
were used in order to remove blink, gaze and mouth move-
ment.

B. Data Processing

The data processing step was by far the longest and most
tedious step in this experiment. Whilst the dataset used already
had pre-processing applied to it [2], more pre-processing was
applied on top in order to attempt to improve accuracy further.
Many different band-pass filters, PCA and other transforma-
tions were applied on the data, however, none seemed to
improve the performance of any of the models. In the end,
the transformations that did improve performance was derived,
which was then used throughout the experiment. The ”useful”
segment of time from 0.5s to 3.5s was used when processing
the data. The time slot falls directly on the cue and action
interval (represented on Figure 1). On top of the already pre-
applied 0.5-100Hz band-pass filter and ICA, an additional 8-
30Hz band-pass filter was also applied. The reasoning for that
is that the 8-30Hz frequency range combines the µ-rhythm (8-
13Hz), associated with motor imagery, and the β-rhythm (13-

Set Subjects Samples Channels Trials
Train 10 512 128 160
Test 10 512 128 40

Overall 10 512 128 200
TABLE I

SET SPLIT DISTRIBUTION

Set ”Up” ”Down” ”Left” ”Right”
Train 40 40 40 40
Test 10 10 10 10

Overall 50 50 50 50
TABLE II

TEST LABELS DISTRIBUTION

30Hz), which is associated with language processing, active
thinking and cognitive control [4].

However, this, too, yielded poor results. A Hilbert trans-
form was applied afterwards, which, surprisingly, improved
performance [5].

All 10 subjects’ data was filtered with this process. For each
of the four possible word (Up, Down, Left and Right) a class
value of 0, 1, 2 and 3, respectively, were assigned. A typical
processed EEG signal for each class is shown in Figure 2.

The dataset was split, with 20% of the dataset being put
into the test set, and 80% of the dataset being put into the
train set.

With there being 10 subjects, each subject having 200 trials,
each trial having 128 channels, with each channel having
512 recordings (samples), the training and test set were split
according to the distributions being visible on Table I.

Out of the 200 trials, there were 50 trials of each label,
making this dataset perfectly balanced. When splitting into
train and test datasets, the values were stratified, thus, being
perfectly split according to table II.

C. CSP-LDA

The first attempt at classifying the data was done with
the help of Linear Discriminant Analysis (LDA). In order to
better detect useful features, a Common Spatial Pattern (CSP)
algorithm was applied in order to extract 4 spatial filters to
apply to the data [6]. While traditionally, the CSP algorithm
is used on binary classifiers to maximize the variance of one
class, while minimizing the variance of the other class, the
MNE library in python features a different implementation,
which utilizes joint approximate diagonalization (JAD), which
is equivalent to Independent Component Analysis [7]. The
exact number of spatial filters was found using trial and error,
with the optimal amount of filters being 4 to 8, 4 filters showed
the best performance.

The CSP algorithm learned the spacial filters using the
training dataset, and was then applied to both the train and test
datasets, in order to keep the two datasets separate. After this,
LDA was used, with shrinking applied using the Ledoit-Wolf
method, which is used by default in the SciPy library, which
is a way to estimate the shrinkage constant without cross-
validation [8]. However, this step does not affect the result in



Fig. 2. Average Waveform for different classes for Subject 5

a noticeable way, since the dimensionality of the date (128) is
a lot less than the number of samples (512).

Each subject was individually trained on, and results eval-
uated separately, then averaged.

D. CSP-SVM

We followed by applying Support Vector Machines, with the
hope of improving on our results from LDA. Data preprocess-
ing pipepine was the same as for CSP-LDA. After splitting the
dataset, we transform our train and test splits with csp filters
obtained from train split. Grid search for hyperparameters
revealed the best performance while using 4 CSP filters and
sigmoid kernel, which, in theory should effectively leverage
the non-linearities present in the dataset.

In the same way as CSP-LDA, each subject was individually
trained on, and results evaluated separately, then averaged.

E. EEGNet

EEGNet is a CNN-based architecture specifically tailored
for classification tasks in BCI. EEGNet’s convolution layers
are capable of learning both spatial and temporal features on
their own. This means it can learn from almost raw EEG data
with minimal pre-processing. EEGNet’s architecture consists
of 2 blocks. The first block comprises of 2D convolutions
and DepthWise convolutions. Conv2D layers are responsible
for extracting the most discriminative temporal information
from EEG timeline. DepthWiseConv2D applies convolution

Fig. 3. LDA Confusion Matrix for Subject 10

across different EEG channels, and responsible for extract-
ing temporal information. The dimensions of our EEGNet’s
Conv2D layer is (1, 512), and 512 signifies the kernel length
of twice the sampling rate (256 Hz). The dimensions of Depth-
WiseConv2D filters are (128, 1), since our dataset contains 128
channels.

The second block does separable convolutions followed
by classification in FC layer. The goal of using separable
convolutions is to summarize information while decreasing the
number of parameters of the model. The classification layer
consists of a single dense layer followed by softmax activation
function.

Our EEGNet was trained using cross validation with 4 folds,
and the best performing model weights were selected across
folds.

III. RESULTS

A. CSP-LDA

The LDA classifier was not able to effectively separate the
four classes, apart from a limited amount of subjects. Since
there have been 10 subjects with different trained models, not
all 10 confusion matrices can be shown. Instead, a collection
of F1 and Accuracy of each subject’s specification, and an
example confusion matrix for two subjects is shown. The mean
accuracy for all the subjects was 24%, and the mean F1 score
was 23%, which is less than the 25% baseline accuracy by
picking randomly. However, on some subjects, like subjects 1,
2, 3 and 10, the accuracy is slightly above that (Figure 5). The
confusion matrices for subjects 2 (Figure 4) and 10 (Figure 3)
are presented.

B. SVM

The SVM classifier was also a mixed bag. It was more
performant on some, and less performant on other subjects.
The detailed results are presented in the overall results (Table
III) as well as Figure 6. The confusion matrices for some of
the classes are also provided in Figures 7-8



Fig. 4. LDA Confusion Matrix for Subject 2

Fig. 5. F1 and Accuracy for each Subject w/LDA

Fig. 6. F1 and Accuracy for each Subject w/SVM

Fig. 7. SVM Confusion Matrix for Subject 2

Fig. 8. SVM Confusion Matrix for Subject 10

C. EEGNet

EEGNet was the only model showing somewhat reasonable
performance. 11 clearly shows that EEGNet was able to
classify all subjects with accuracy higher than if classes were
classified by random choice. Although the results are by no
means very accurate, it can be considered success given the
complexity of the task. Here we present EEGNet performance
for all subjects in Figure 11, and confusion matrix for some
subjects in Figure 10 and Figure 9. The results signify that
classification of inner speech is possible.

Subj. LDA SVM EEGNET
No. F1 Acc F1 Acc F1 Acc
1 0.29 0.30 0.28 0.27 0.33 0.32
2 0.33 0.33 0.39 0.39 0.36 0.38
3 0.27 0.28 0.25 0.26 0.47 0.47
4 0.23 0.23 0.24 0.28 0.29 0.29
5 0.25 0.25 0.18 0.19 0.30 0.31
6 0.22 0.23 0.29 0.30 0.29 0.30
7 0.18 0.19 0.12 0.14 0.41 0.42
8 0.14 0.18 0.10 0.17 0.47 0.48
9 0.20 0.21 0.25 0.25 0.31 0.31
10 0.27 0.27 0.18 0.25 0.34 0.33

TABLE III
TOTAL RESULTS FROM LDA, SVM AND EEGNET



Fig. 9. EEGNet Confusion Matrix for Subject 2

Fig. 10. EEGNet Confusion Matrix for Subject 10

IV. DISCUSSION

Comparing the results from all three models (Figure 12),
we get the image that only our EEGNet implementation
was able to achieve a somewhat reliable classification result.
Both the LDA and SVM approaches have proven to be, on
average, worse than picking randomly out of the four labels,
however, this varies from subject to subject. This dataset is
one of the most detailed datasets available publicly on Inner
Speech, however, the research around it has been lacking in

Fig. 11. F1 and Accuracy for each Subject w/EEGNet

Fig. 12. Average Scores for All Models

volume. The dataset authors themselves did not publish any
sort of classification methods to be used with it, and very little
research has been done on that. However, whilst our results
may look disappointing at first, it is important to consider that
the dataset itself is quite complex. We were able to find only
one research paper focusing on the dataset, and their average
accuracy of 29.67%, with the average F1-score of 29.61% falls
below the EEGNet implementation’s average accuracy and F1-
score of 35.79% and 36%, respectively.

One way to improve the overall performance of our exper-
iment in the future could be the elimination of unnecessary
channels, as 128 electrodes increases the dimensionality and
the complexity of data for a task that only focuses on Inner
Speech. Improving the CSP filtering and using other filters
might prove useful as well, although experimentation on these
has led us to nowhere throughout our experiment.
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